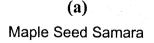
Plant Inspired Techniques For Distribution of Payload

Sarita Thakoor and Dara Sabahi

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109-8099

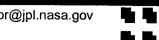
Presentation at the NASA/DoD Second Biomorphic Explorers Workshop

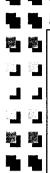

Bio-inspired Engineering of Exploration Systems 2000 held Dec 4-6, 2000 at Jet Propulsion Lab, Pasadena, CA

Plant World Inspired Payload Distribution Methods

- Simpler and smaller than parachute on small scale for dispersion of sensors and small surveillance instruments.
- Controlled Descent Rate ~ 15 m/s (on surface of Mars)

Design Goals:





(b) **Dandelions**

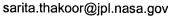
- Small total mass, ~100 g
- High payload mass fraction, > 80%
- Captures key features of controlled and stable descent as observed in Samaras, such as maple seeds
- Reliable, minimal infrastructure
- unobstructed view overhead for atmospheric measurements
- simple construction, few constituent parts

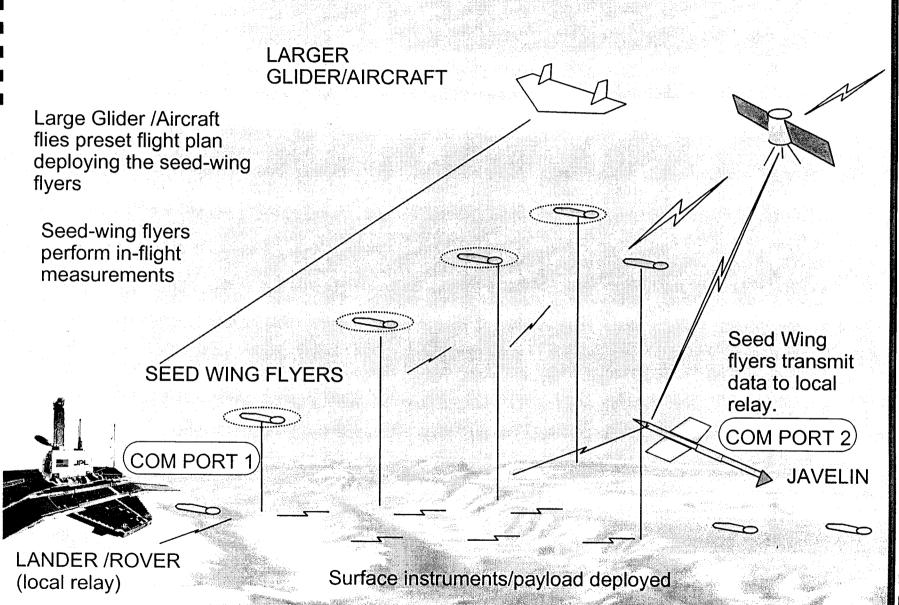
Seed Wing Mission Concept

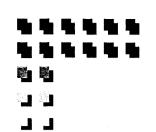
Mission Objective

- · Wide-area dispersion of in-situ surface chemical/mineralogical measurement to augment imagery
- Atmospheric survey
- · Scouting for lander/rover mission planning (site selection), and preparation for sample return reconnaissance

Deployment

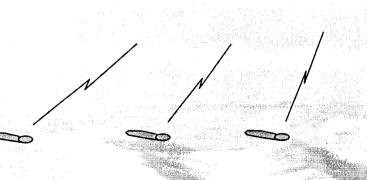

Entry probe or airborne platform (glider, balloon, powered a/c)


Payloads


- MEMS sensors for chemistry, soil oxidation, or pH
- Temperature and Pressure

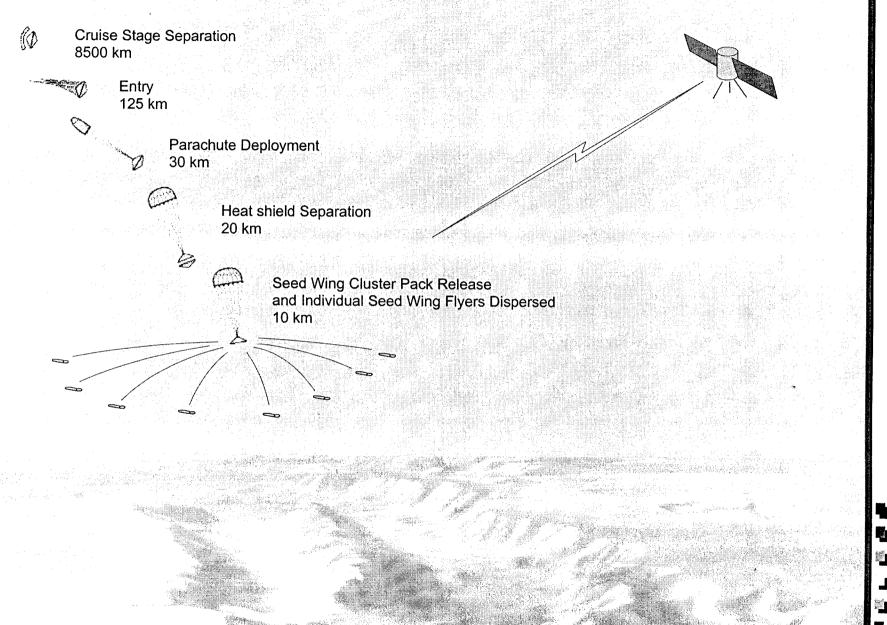
Flight Profile

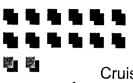
- Seed wings are sequentially deployed from another airborne platform (glider, balloon) or entry probe
- · Each seed wing autorotates to the surface, collecting atmospheric data (temperature and pressure)
- After landing, each seed wing conducts a surface experiment using pyrotechnic or chemical test, which is analyzed using a MEMS sensor for presence of key trace elements. Also, the seed wing could deploy a biomorphic surface/subsurface explorer such as the worm robot
- The orbiter or airborne platform emits a signal initiating sequential download of data from each seed wing. A phased array antenna is used to locate the source and recover the data

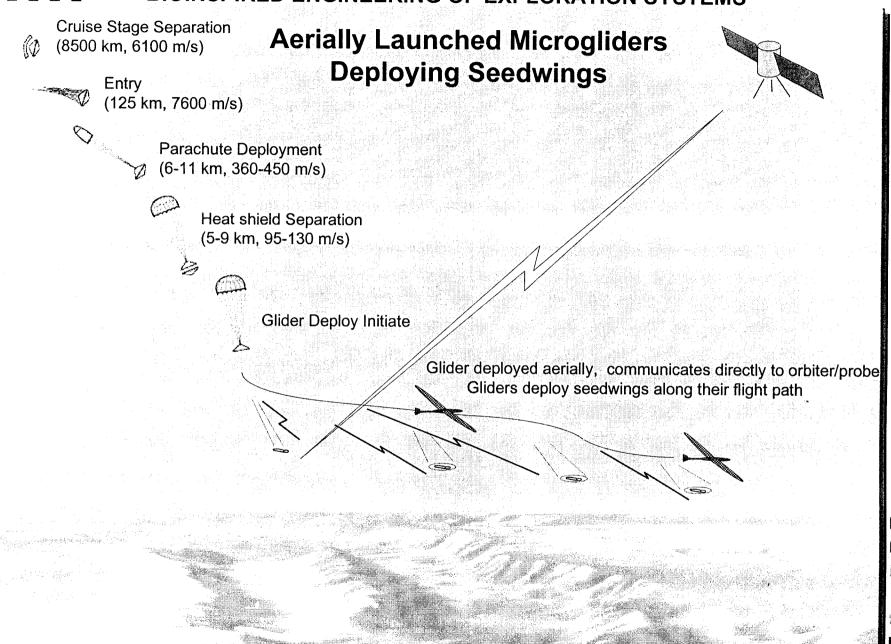


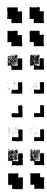
Winds Aloft

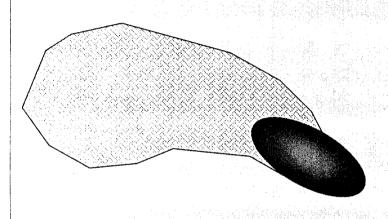
Seed wing flyer released as balloon drifts downwind.


Balloon probe transmits data to orbiter.


Seed wing flyer transmits data to balloon probe.


Seed wing flyers perform in flight measurements.


Seed wing flyers deploy surface instruments/payload



Seed Wing Flyers

- Simpler and smaller than parachute on small scale for dispersion of sensors and small experiments.
- Payload mass fraction >80%.

Maple seed

Total	Mass		40.0	60.0	250.0 g
Pavlo	oad Ma	ss =	36.0	56.0	220.0 g

Payload Mass = 36.0 | 56.0 220.0 g Payload Mass% = 90 | 94 88 % Blade Span = 0.16 | 0.19 0.40 m

Swept Area = $0.08 \ | 0.12 \ | 0.50 \ | m^2$

Volume = $51 \mid 77 \mid 320 \text{ cm}^3$ Descent Rate = $19 \mid 19 \mid 19 \text{ m/s}$

Duration = 790 790 790 sec

Starting Alt. = $10 \frac{1}{4}$ $10 \frac{1}{4}$ 10 km

 Performance calculations based on conditions at 5km altitude on Mars.

On earth a seed wing of the same size and shape would have the descent rate to be 1/6 of the corresponding value on Mars (~ 3 m/s). On earth for military applications we could trade some of the size and use a higher descent speed and still obtain safe delivery.

Baseline

Comparison of Biomorphic Flight System Concepts for Mars

_		
<i>(</i> '	1200	
\mathbf{C}	ass	

Parameter		Powered μFlyer	Glider	Seed Wing Flyer	
Lift Generation		Wing	Wing	Rotating Wing	
Method of Propulsion		Propeller	Gravity	Gravity	
Energy Storage		Li Battery	Altitude	Altitude	
Total Mass	(g)	57	57	57	
Payload Mass (%) (g)	6 (~10 %)	32 (~ 50 %)	52 (~ 90 %)	
Wing Span	(m)	0.19	0.19	0.19	
Volume	(cm ³)	380	230	77	
Flight Speed	(m/s)	. 84	84	19	
Range	(km)	10	50	0	
Duration	(s)	120	700	<u>790</u>	
Starting Altitude	(km)	0	10	10	

Comparison with Parachute

Parameter Seed Wing Flyer Parachute Lift generation **Rotating Wing**

Drag **Method of Propulsion** Gravity Gravity

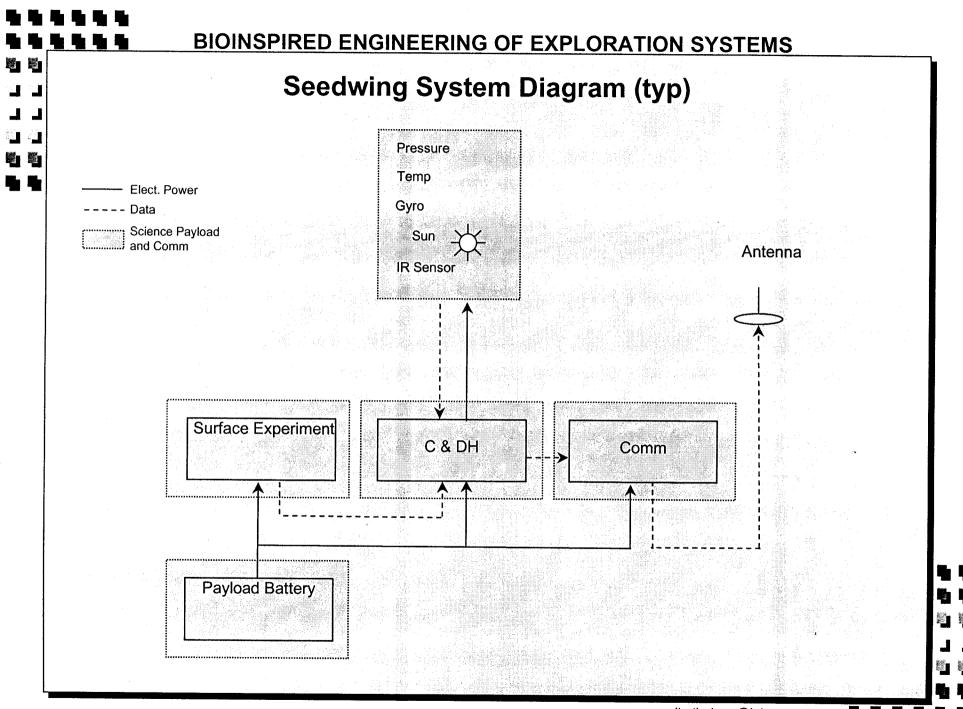
Energy Storage Altitude Altitude

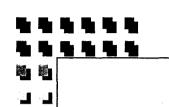
Payload Mass Identical Identical

Area Swept Identical Identical

Blade Span/Diameter ~ 0.55D D

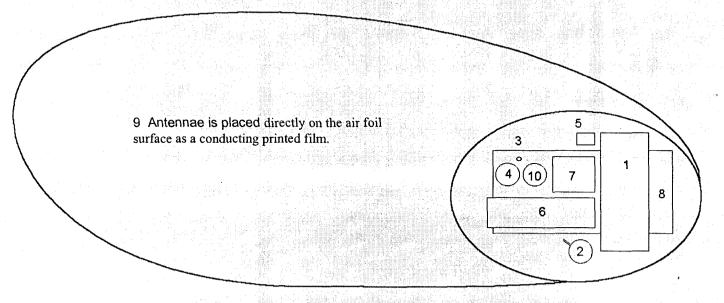
Descent Velocity Vdp = 1.414 Vds Vds


Duration of Descent Tdp = 0.7 TdsTds


Shock on Impact Sp = 2 Ss Ss

Biomorphic Controls in Seed Wing Flyers

Active control of seed wing descent is a significant concept for further development to impact the usefulness of seed wing flyers. This is an effort to influence the direction of descent, by periodic movement of a control surface on the wing portion. For example, a simple wing structural element made of advanced piezo-polymeric composite actuators could play a dual role as a structural member as well as an active control element when activated, altering the lift characteristics for a fraction of one rotation. The signal to drive the structural element would be generated by the measurement of sunlight on the upper payload surface. That signal would normally vary with rotation due to changing sun angle. Detection of a certain part of that periodic signal would be programmed to activate the change in wing shape. Thus, the seed wing would tend to move in a consistent pattern relative to the sun direction. Individual seed wings in an ensemble could be programmed to have varying solar response patterns, ensuring that the group travels away from each other, for maximum dispersion in the landing location.



60 gm Seedwing Internal Arrangement

System Components

- 1. Battery, Li 400mAh
- 2. Static pressure sensor
- 3. Temperature sensor
- 4. Solar irradiance sensor
- 5. Spin rate sensor (2)
- 6. Surface experiment
- 7. C & DH
- 8. Communications
- 9. Antennae
- 10. IR sensor

Acknowledgements

JPL

Terry Martin/Tim Schofield: Atmospheric Science

John Michael Morookian: Electrical design and system Integration

Frank Palluconi: Science Imagery

Anil Thakoor: Image Processing

Jim Burke

AeroVironment: Aerodynamic System Design

Carlos Miralles

CALTECH: Telecom

Dave Rutledge

RAYTHEON: Aerodynamics and Navigation

Jim Small